Dawes observed that the complex statistical algorithm adds little or no value. One can do just as well by selecting a set of scores that have some validity for predicting the outcome and adjusting the values to make them comparable (by using standard scores or ranks). A formula that combines these predictors with equal weights is likely to be just as accurate in predicting new cases as the multiple-regression formula that was optimal in the original sample. More recent research went further: formulas that assign equal weights to all the predictors are often superior, because they are not affected by accidents of sampling.

Author: Daniel Kahneman

Dawes observed that the complex statistical algorithm adds little or no value. One can do just as well by selecting a set of scores that have some validity for predicting the outcome and adjusting the values to make them comparable (by using standard scores or ranks). A formula that combines these predictors with equal weights is likely to be just as accurate in predicting new cases as the multiple-regression formula that was optimal in the original sample. More recent research went further: formulas that assign equal weights to all the predictors are often superior, because they are not affected by accidents of sampling. - Daniel Kahneman


©gutesprueche.com

Data privacy

Imprint
Contact
Wir benutzen Cookies

Diese Website verwendet Cookies, um Ihnen die bestmögliche Funktionalität bieten zu können.

OK Ich lehne Cookies ab